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The range of existence and the stability of spatially periodic solutions has been 
studied for steady and oscillatory two-dimensional convection in a fluid-saturated 
porous medium. We have analysed the limit where viscous effects are dominant and 
Darcy's law can be applied. A Galerkin method has been used to obtain the steady 
and the centrosymmetric oscillatory solutions that appear in nonlinear convection 
at Rayleigh numbers up to 20 times the critical value. Their stability boundaries 
to arbitrary infinitesimal perturbations have been obtained. Above a given Rayleigh 
number stable oscillatory solutions are possible at wavenumbers close to the critical 
values. The stability of this oscillatory state with respect to infinitesimal perturbations 
of any wavenumber has also been studied. The resulting temporal dynamics in the 
different unstable regimes is briefly discussed. We show the existence of 3:l spatial 
resonances of the steady roll solutions and the existence of stable centrosymmetric 
and non-centrosymmetric oscillatory solutions. 

1. Introduction 
The study of thermal convection in a fluid heated from below has attracted much 

interest as one of the simplest hydrodynamical systems in which the evolution towards 
turbulent flows can be investigated. The transition to turbulence starts from a simple 
steady state that evolves through subsequent transitions (Krishnamurti 1970a,b; Busse 
1978). Oscillatory convection seems to play an important role in this evolution to 
complex temporal behaviour. Experimental studies of the transition to complex 
flows have been carried out in nearly square boxes, where the spatial structure 
of the flow is strongly constrained (Ahlers & Behringer 1978; Berg6 & Dubois 
1979; Maurer & Libchaber 1979; Gollub & Benson 1980). A main motivation 
for the present analysis has been an improved understanding of the dynamics of 
convection in narrow horizontal fluid-filled channels heated from below. The analogy 
between two-dimensional convection in a porous medium and convection in a Hele- 
Shaw cell has often been emphasized in the literature (Wooding 1960; Kvernvold 
1979) and will be exploited by the present analysis. Unfortunately the idealized 
boundary condition of vanishing heat conductivity of the side walls in the Hele- 
Shaw configuration is difficult to realize in laboratory experiments. Observations 
such as those of Koster & Miiller (1984) thus agree only qualitatively with the 
theoretical predictions. Nevertheless, the basic system of equations to be studied 
in this paper represents the simplest case of a realistic fluid dynamical system in 
which the evolution from simple to complex flows can be investigated through three 



306 M .  de la Torre Juhrez and F. H.  Busse 

or four bifurcations. The results of the analysis are thus meant to serve as a 
guide for more detailed investigations required for quantitative comparisons with 
experiments. 

The stability analysis of nonlinear steady convection in an Hele-Shaw cell was 
carried out by Kvernvold (1979). He obtained stability boundaries with respect to 
infinitesimal wavenumber-changing perturbations of the stationary solutions. He 
showed that for each value of the Rayleigh number Ra there is a band of stable 
wavenumbers a. But, except for low values Ra, the instabilities occurring at each 
end of the wavenumber band are different. For a limited region above the crit- 
ical Rayleigh number steady roll solutions become unstable at both ends of the 
wavenumber band via the Eckhaus instability. Above a Rayleigh number of the 
order of Ra = 8Ra, solutions with a wavenumber equal to the critical value a, 
and smaller are unstable to oscillatory convection. The critical Rayleigh number 
for the onset of this oscillatory instability depends strongly on the value of a. At 
the other end of the stable wavenumber band, Kvernvold obtained an Eckhaus 
instability for all Rayleigh numbers up to 20 times the critical. A similar study 
has been carried out for convection in a porous medium in a two-dimensional 
(Caltagirone 1975) and in a three-dimensional geometry (Strauss 1974). The re- 
sults in the two-dimensional case show a behaviour similar to that in the Hele- 
Shaw case, but yield an onset for oscillatory convection slightly above lORa,. This 
value differs from the one obtained by Kvernvold (1979), but it is closer to the 
one obtained in later works and in ours. The study of the three-dimensional 
case shows that at Ra = 9.6Ra, cross-roll convection sets in for a = a,, indicat- 
ing that three-dimensional effects become important before oscillatory convection 
occurs. 

Detailed numerical analyses of the onset of oscillatory convection and the transition 
to chaos have been carried out for wavenumbers close to the critical value either 
in a finite two-dimensional container (Frick & Miiller 1983; Steen & Aidun 1988; 
Caltagirone & Fabrie 1989; Graham, Miiller & Steen 1992), or in a cubic box (Kimura, 
Schubert & Strauss 1986). Steen & Aidun confirmed the results of Caltagirone for 
the onset of two-dimensional oscillatory convection and obtained the critical value 
Ra = 391 at a = a,. In the present study, we review the stability analysis of steady 
convection with respect to infinitesimal two-dimensional perturbations of arbitrary 
wavenumber. We have analysed the oscillatory solutions of finite amplitude that 
appear at wavenumbers close to the critical one and have studied their stability as a 
function of the wavenumber for different Rayleigh numbers. The regimes where the 
solutions become unstable have also been studied via numerical simulations in order 
to understand the dynamics of the unstable flow. 

2. Mathematical description of the problem 
We consider a fluid-saturated porous medium heated from below and cooled at 

its upper boundary. The porous layer is of infinite extent in the horizontal direction 
and has the height h. In a fluid-saturated porous medium of small pore size with 
dominant viscosity, inertial effects can be neglected. This approximation is known as 
Darcy’s law. If we nondimensionalize the equations using h 2 / K ,  as the time scale, 
the thickness h of the fluid layer as the length scale and AT as temperature scale, 
we obtain in the Boussinesq approximation (see for instance Strauss 1974) for the 
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equations of motion and the energy equation: 

u ( x , ~ , t )  = -VP + Rack, ( 2 . 1 ~ )  
v.  u = o ,  (2.lb) 

a,e(x, Z,  t )  + I C ( ~ , ~ ,  t )  - v e ( ~ ,  z ,  t )  = u(x,z, t )  . k + v26(x,z, t) ,  ( 2 . k )  

where u(x, z ,  t )  is the velocity, 8(x, z ,  t )  is the deviation of the temperature from the 
state of pure conduction with the constant thermal diffusivity K ;  Ra = yghkAT/vK is 
the Rayleigh number with the coefficient of the thermal expansion y ,  the permeability 
of the porous medium k and the kinematic viscosity v ;  P is the dynamic pressure. 
Since the temperatures at the boundaries are fixed with the difference 6 T the boundary 
conditions are 6 = w = k - u  = 0 at z = &i. The boundary conditions in the horizontal 
direction are taken to be periodic. Since we are interested in two-dimensional motions, 
we write the velocity as the curl of a stream function y(x,  z ,  t ) j .  We thus obtain 

V2y = Raax6, 
ate + J ( W ,  8) = axy + v28. 

( 2 . 2 ~ )  

(2.2b) 

The first equation is linear and can be solved directly to yield t~ as a function of 8. 
The energy equation (2.2b) has a nonlinear term given by the Jacobian of t~ and 8. We 
use a Galerkin method to solve the equations. For that purpose the solution is written 
as an expansion in the eigenfunctions of the linear stability problem, corresponding 
to trigonometrical functions (see for instance Wooding 1960), 

m = l  [=-a ,=-a 

The stream function y is given as a solution of ( 2 . 2 ~ ) :  

The amplitudes of the Fourier modes bmln are quaternions (complex numbers on a 
C A C complex space) and i and j are the imaginary units. Eigenfunctions periodic 
in time have been introduced in order to account for the possibility of stationary 
solutions that are oscillatory in time. With this expansion our equations of motion 
become a set of infinite algebraic equations with the complex amplitudes bmln and the 
frequency w as the unknowns. For the steady solutions, w vanishes, but for oscillatory 
states we have one equation fewer than unknowns. We solve the problem by taking 
advantage of the translation invariance in time. We thus fix the phase of a particular 
component, say bill, at t = 0 by requiring Im(blll) = 0. The resulting set of algebraic 
equations is then solved numerically with a root-finding Newton-Raphson algorithm. 

In our numerical scheme, the Fourier series must be truncated at some highest mode 
N .  This determines the spatial resolution of our calculations, giving the maximum 
wavenumber that can be resolved. On the other side, a corresponds to the minimum 
wavenumber we can resolve (i.e. the maximum size of the numerical box for which 
periodic boundary conditions apply). The condition m + 1 < N was used as truncation 
scheme in order to reduce the computing time and memory requirements without 
losing significant information (for a discussion see for instance Veronis 1966). 

The symmetry properties of the equations can be used to reduce the numerical 
effort. As the temperature deviation 8 is invariant under reflections in the horizontal 
direction, we expect bmln = bm-lfl and, since 8 is a real function, the condition 
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FIGURE 1. Relative error in the Nusselt number depending on the truncation parameter 
(rn + 1 < N )  as a function of the wavenumber tl/tl, for different values of the Rayleigh number. 

bmln = bmPln + = bLl-n must be satisfied. Here the plus stands for complex conjugate in 
i and the star for complex conjugate in j. 

From the linear stability analysis of the pure heat-conducting state one can see (see 
for instance Wooding 1960) that the first unstable mode corresponds to rn = 1,l = 

1, n = 0. The bifurcating solution is characterized by the property that all coefficients 
with 1 + in = odd vanish. We therefore call this solution centrosymmetric or the even 
rolls. Because of the nature of the nonlinear coupling term, the rn + 1 = odd modes 
can appear only via a bifurcation from the even rolls. The 1 +rn = even symmetry has 
also been used to reduce the numerical effort needed to obtain the steady solutions. 

The criterion for the choice of our truncation parameter N is based on the value 
of the Nusselt number Nu at the critical wavelength. The Nusselt number is given by 
the ratio between the total heat transferred and the heat transferred by conduction. 
Its spatial average at the bottom wall can be written as 

n<M m<N n<M 

n>-M m=l n>-M 

When the Nusselt number obtained for the solution with wavenumber a, and N 
modes is equal to the one obtained with N + 2 modes, with a relative error of lop3, we 
have kept N modes, otherwise we have increased N until this condition is fulfilled. In 
this case the amplitudes of the Fourier modes corresponding to the low-wavenumber 
modes were typically more than three orders of magnitude bigger than the amplitudes 
of the high-wavenumber modes. 

An estimation of the error obtained with this truncation condition is given in 
figure 1. We have plotted the differences between the Nusselt number for N + 2 and 
N modes for several Rayleigh numbers as a function of the wavenumber a. It is 
seen that, for a given Rayleigh number, the error increases for wavenumbers in the 
middle of the band. We shall see in 53 that this effect is due to a steeper temperature 
gradient at the boundaries for the middle wavelengths. Nevertheless, the regions of 
interest are close to the two ends of the wavenumber regime such that this increase 
in the numerical error is irrelevant. 
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The truncation order M for the temporal modes is chosen independently of the 
spatial modes. The condition used to determine M is the requirement that the 
frequency o has an absolute error of less than 1 when compared with a higher order 
truncation M + 1. This has assured a typical relative error of about - 0.5% in o. 
With this condition the typical truncation order is M = 3. 

Once the stationary solutions &(x, z ,  t )  are obtained, a linear stability analysis can 
be carried out. We write the perturbed solutions as e(x, z ,  t )  = &(x, z,  t )  + 8(x, z ,  t )  
and y(x,  z ,  t )  = yo(x, z ,  t )  + @(x, z ,  t )  and linearize the resulting equations for the 
perturbations to study their complex growth rates c = or + jaj: 

The parameter d has been introduced to account for the possibility of perturbations 
with a wavenumber different from that of the stationary solution; d varies between 
zero and one. Owing to the reflection symmetry in the horizontal direction, we only 
need to consider values of d between 0 and 0.5. The interval from d = 0.5 to d = 1 
will be its symmetric reflection. If we insert the expression of the perturbations for the 
temperature in equation ( 2 . 2 ~ )  we obtain for the perturbation of the stream function: 

Equation (2.2b) can be used to obtain the equation for the perturbations, which is 

(2.5) 

When this equation is written in Fourier space we obtain a set of linear algebraic 
equations after using relations (2.3) and (2.4). If all eigenvalues a of the matrix of 
coefficients of this linear set of equations have negative real parts for all values of 
d,  the stationary solutions are stable to infinitesimal perturbations. If any eigenvalue 
exhibits a positive real part, the solution is unstable. This kind of stability analysis 
has been carried out for the stationary solutions as a function of a and Ra. 

The number of modes for the stability analysis was such that there were no 
significant differences between the truncation parameters N and N + 2. In the case of 
the oscillatory solutions, the comparison with a higher truncation value was possible 
only up to the Rayleigh number Ra - 700; above this value we were constrained by 
the available computer capacity. 

Another test of the stability analysis uses the fact that the steady and oscillatory 
solutions usually exhibit an even parity, i.e. all coefficients with bmln vanish for odd 
rn + 1. The disturbances of the form (2.3) can thus be separated into those with even 
and odd parity corresponding to the cases when coefficients 6,1n with odd rn + 1 or 
even rn + 1 vanish, respectively. When the truncation N is sufficiently large, even 
disturbances with 0 < d < 0.5 will give approximately the same growth rate o as odd 
disturbances with 0 < 1 - d < 0.5. 

We have followed the even-roll solution bifurcating at the critical value by increasing 
the Rayleigh number in small steps. Our results were compared whenever possible 
with the data as given in the literature by Strauss (1974), Caltagirone (1975), Frick 
& Muller (1983), Kimura et al. (1986) and Steen & Aidun (1988) for the Nusselt 

linearized to yield 

a$ + J(@, e) + ~ ( y ,  8) = ax@ + v28. 
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FIGURE 2. Average value of the Nusselt number of the steady and oscillatory solutions as a function 
of the Rayleigh number for a fixed wavenumber a = a,. The unstable stationary solutions are 
represented by dots. The frequency of the oscillatory solutions is denoted by squares. 

number, the amplitude of the modes or the frequency of the oscillatory solution. 
Using as initial conditions the values so obtained, we then pursued at each Ra the 
solutions in a. 

3. Steady, spatially periodic solutions 
The onset of steady rolls is obtained from the linear stability analysis of the 

trivial state in equations ( 2 . 2 ~ )  and (2.2b). Convection with a given wavenumber sets 
in when the Rayleigh number exceeds the lowest eigenvalue of the linear problem 
corresponding to 1 = 1,m = 1, Rao(a) = (a2 + T C ~ ) ~ / ~ ~ .  The curve defined by 
this relationship is the neutral curve. The minimum of the neutral curve is where 
convection first sets in and is given by the critical Rayleigh number Ra, = 4n2 and 
wavenumber a, = TC. A gradual increase of the Rayleigh number will excite only 
higher modes with m + 1 =even which describe the even-roll solution. 

As the Rayleigh number is increased from the critical value, the higher spatial 
modes become more and more important (see for instance Strauss 1974). The 
Nusselt number increases as shown in figure 2. We have plotted the average Nusselt 
number Nu0 as a function of the Rayleigh number for the fixed wavenumber a = 
a,. At the Rayleigh number Ra = 391 f 1 the steady solution becomes unstable 
and is replaced by an oscillatory solution with a higher average Nusselt number. 
This is indicated in figure 2 through the continuation of the steady solution as 
dotted line and of the oscillatory solution as solid line. The frequency o of this 
oscillatory solution is given in the same figure by solid squares. The heat transfer 
increases more strongly with increasing Rayleigh number after the start of oscillatory 
convection. The frequency of the oscillatory solutions also increases with the Rayleigh 
number since it corresponds to the circulation time of convection. Experiments 
on oscillatory convection made by Koster & Muller (1984) in a Hele-Shaw cell 
and numerical analysis by Kimura et al. 1986 and by Graham & Steen (1994) 
show a similar behaviour. At Ra = 545 this even oscillatory solution becomes 
unstable and therefore we have replaced the corresponding solid line in figure 2 by a 
dotted line. 
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FIGURE 3. Value of the Nusselt number of the steady solutions as a function of the wavenumber CL 
for different values of the Rayleigh number. 

For a given Rayleigh number the Nusselt number varies with the wavenumber 
as shown in figure 3. Evidently the heat transfer is most effective at intermediate 
wavenumbers between the two extrema determined by the neutral curve. As a 
consequence, the profile of the horizontally averaged temperature shows a steep 
variation close to the upper and lower boundaries for the intermediate wavenumbers. 
The thermal boundary layers become very thin and a higher truncation is needed to 
study this regime with the same resolution as near the ends of the wavenumber band. 

4. Stability of the steady solutions 
We have studied the stability of the steady rolls to infinitesimal perturbations of 

arbitrary wavenumber. This was done, using equations (2.3)-(2.5) without forcing any 
symmetries on the perturbations, so that modes with amplitudes Ern[" # were 
allowed, as well as modes with any parity in m + 1. 

To study the stability of the stationary solutions in the nonlinear regime, we 
obtain first their amplitudes via a Newton-Raphson algorithm, as mentioned in $2. 
With these amplitudes we can calculate the matrix of the coefficients of the set of 
equations (2.5) in Fourier space. This matrix was diagonalized by reducing it first to 
a Hessenberg form and then a QR algorithm was used to obtain the eigenvalues (see 
for instance Press et al. 1988). 

Similar stability analyses have been carried out for an infinite Hele-Shaw cell 
by Kvernvold (1979), and for a two-dimensional porous medium by Caltagirone 
(1975). Caltagirone studied the stability to perturbations with the same wavenumber 
as the steady solutions and the study was done only up to Ra = 400. While our 
results are generally similar to theirs, there are some differences. This disagreement 
disappeared when we decreased our truncation parameter N ,  and considered only 
perturbations with the same parity as the steady solutions and with 0 < d d 0.5. Under 
these restrictions we could reproduce quantitatively the stability diagram obtained by 
Kvernvold, except for a change in the interpretation of two of the stability boundaries: 



312 M .  de la Torre Juarez and F. H .  Busse 

Ra 

800 

600 

400 

200 

0 2 4 6 8 

FIGURE 4. Regions of stability of the steady solutions as a function of the Rayleigh number and 
the wavenumber. The neutral curve is the outer solid line; the Eckhaus instability is plotted as a 
line with solid circles; the transitions to the different oscillatory instabilities are plotted as a solid 
line with squares at high wavenumbers and as a solid line at low wavenumbers; the stability limits 
of the stationary oscillatory solutions are plotted as a solid line with open circles. 

the places where the Eckhaus instability and the oscillatory instability occur at low 
wavenumbers have to be exchanged. 

The results of our stability analysis are shown in figure 4. The outer solid line 
corresponds to the neutral curve where convection sets in. The line with solid circles 
gives the thresholds for the Eckhaus instability and for a monotonic instability with 
odd parity. At high wavenumbers there is a line with solid squares that corresponds 
to an oscillatory growth of the infinitesimal perturbations. At low wavenumbers, the 
inner solid line corresponds to the transition from steady to oscillatory convection and 
the solid line with open circles indicates where even oscillatory convection becomes 
unstable. This figure shows that there is an oscillatory instability predicted for 
small wavenumbers a - a,. This oscillatory state has been observed experimentally 
by Koster & Muller (1982) and by Daviaud, Bonetti & Dubois (1990), as well as 
numerically by Frick & Muller (1983) for instance. 

A careful study of the stability boundaries to each side of the stable wavenumber 
band was carried out starting at the critical value Ra,. Both ends of the stable 
wavenumber band correspond to an Eckhaus instability up to Ral = 114 i- 1, where 
we detect for a = (0.4776k 10-4)a, a monotonic instability with maximum growth rate 
at d = 0 which continues along the low-wavenumber end of the stable region. The 
growth rate of this instability is shown as a function of the perturbation wavenumber 
d as a solid line with open circles in figure 5 for Ra = 200 and a = 0.401,. When 
the stability analysis is restricted to even-parity perturbations, this instability grows 
with d = 1, which shows that it is driven by the exponential growth of the odd 
perturbations. It will be shown in $7 that this instability is related to a spatial 3:l 
resonance mechanism. 

As the Rayleigh number is increased this situation remains unchanged until we 
reach Raz = 218i-1 and a = (0.392i-5 x 10-4)a, At this value, an oscillatory instability 
occurs with d = 0 and ai - 90 at the low end of the wavenumber band, a - 0 . 4 ~ ~ ~ .  
These oscillatory solutions exhibit the same wavelength and parity as the steady rolls 



Stability of two-dimensional convection in a porous medium 313 

0.5 

=r 0 

-0.5 

-0.1 
0 0.1 0.2 0.3 0.4 0.5 

d 
FIGURE 5. Real (solid lines with symbols) and nonzero imaginary parts in j (symbols) of the 
eigenvalues 0 as a function of the perturbation wavenumber d at the point where the steady 
solutions become unstable: (a) open circles for Ra = 200, u/u, = 0.4;(b) closed circles for Ra = 255 
@/a, = 3.92; ( c )  solid squares for Ra = 302, a/a, = 0.8. 

and have been reported in previous work. In figure 5,  we have plotted at Ra = 302 
the real part of the eigenvalues as a solid line with squares and the imaginary part as 
squares without a line, both as a function of the parameter d.  

At Ra3 = 251 & 1, a = (3.865 & 10-4)a, high-wavenumber rolls become unstable 
to oscillatory perturbations with a temporal frequency of the order 70 given by the 
imaginary part of the eigenvalue aj, and with a finite wavenumber corresponding to 
d = 0.33. The corresponding growth rates are also shown in figure 5 for Ra = 255 
and a = 3 . 9 2 ~ ~  as a line with solid circles for the real part and as solid circles for the 
imaginary part. Obviously this instability tends to establish a pattern with three times 
the original wavelength corresponding to rolls with nearly the critical wavelength. 
This transition and the one due to the odd-mode instability at low a have not been 
reported in any of the former stability studies where the analysis is restricted to 
perturbations with even parity and to wavenumbers 0 < d < 0.5. We find under the 
latter restrictions only an Eckhaus-type or an oscillatory instability on each side of 
the wavenumber band in agreement with the previous work. We thus conclude that 
the disturbances admitted by Kvernvold (1979) have not been sufficiently general. 
The new stability boundary and the Eckhaus stability boundary remain close to each 
other for Rayleigh numbers up to 800 and beyond as shown in figure 4. 

The results obtained for the stability of low-wavenumber rolls are in agreement 
with the numerical simulations reported in the literature, most of which were done 
for convection in a square box, where the wavenumber is constrained to be a = a,. 

5. Oscillatory solutions 
From the results of the stability analysis discussed in 94, we can see that there are two 

different types of oscillatory instabilities that bifurcate supercritically from the steady 
solution: At high wavenumbers odd modes grow via a parity-breaking oscillatory 
bifurcation. This instability evolves into a steady structure with a wavenumber that 
differs from that of the growing disturbances with odd parity. There will be a short 
discussion on this instability in 97. The second type of instability has the same 
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FIGURE 6. Variation of the frequency w of the stationary oscillatory solutions as a function of the 
wavenumber for different Rayleigh numbers. 

wavelength as the original steady solution, and it is the same as is observed to 
bifurcate from steady convection in a square box. 

When the Rayleigh number is increased smoothly after convection has set in in an 
infinite layer, the second type of oscillatory convection appears through a supercritical 
bifurcation from the steady rolls state. This type of even oscillatory convection is 
stable in the region of parameter space shown in figure 4 between the inner solid line 
and the line with open circles. We have obtained oscillatory solutions by gradually 
increasing the Rayleigh number and looking for oscillatory solutions with finite values 
of the coefficients bmll at a - a,. Once such a solution was obtained, the value of 
a was changed in small steps. At every step we used the amplitudes obtained with 
the previous a as initial conditions. In the limit of low wavenumbers, the numerical 
method did not converge to any stationary oscillatory solution. This problem also 
occurs in the steady regime. In the case of the steady solutions, this problem is 
caused by a resonance mechanism (Mizushima & Fujimura 1992). In the resonance 
mechanism the solution with 3a instead of a tends to be approached. Alternatively 
a sudden jump into a different type of stationary solution can occur. Nevertheless, 
the region where even oscillations remain stable is always smaller than the region of 
a where our algorithm converged to an oscillatory solution, such that this numerical 
problem did not affect the results of our stability analysis. 

As we approach the transition line to the steady solutions, our numerical algorithm 
always converges. When the maximum values of the bmll amplitudes are calculated at 
several values of a approaching the transition, it can be seen that they decay smoothly 
to zero, while the bm10 amplitudes converge to the ones of the steady solutions. This 
property is expected since we are dealing with a supercritical bifurcation. 

In figure 6 the frequency o of the solutions has been plotted as a function of the 
wavenumber at different values of the Rayleigh number. It is seen that, along the 
transition line between the oscillatory and the steady solutions, the frequency has a 
finite value different from zero. This value coincides with the values obtained for the 
imaginary part of the growth rates that are obtained from the stability analysis of the 
steady state. 
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FIGURE 7. Real (solid lines with symbols) and nonzero imaginary (symbols without line) parts of the 
eigenvalues c as a function of the Floquet wavenumber d for Ra = 600 and CI close to the transition 
into the steady solution (open circles) and close to the transition into unstable even oscillations 
(solid squares). 

6. Stability of the even oscillatory solutions 
The transition to complex temporal behaviour in a square cell occurs as a secondary 

bifurcation of the even oscillatory solutions and its dynamics has therefore been 
studied via numerical integration by several authors (see for instance Frick & Muller, 
1983, Kimura et al., 1986, Caltagirone & Fabrie, 1989). There have been, however, no 
systematic studies on the stability of the even oscillatory solutions in boxes of infinite 
horizontal size. The numerical simulations of the transition from the oscillatory 
state to chaos, although restricted to a fixed geometry, can give some hints about 
the stability of the time periodic state. Graham & Steen (1992) have studied the 
different oscillatory solutions that bifurcate from the steady solution, they did not 
consider perturbations with d # 0. All authors agree on a scenario for a square box 
consisting of the transition from steady solutions to oscillatory solutions with a single 
frequency. At higher values of the control parameter, transitions to a two-frequency 
quasi-periodic state and further to more complicated states have been obtained. 

We have carried out a stability analysis of the even oscillatory solutions based on 
the numerical technique described in 92. The computer memory requirements for 
the consideration of perturbations of arbitrary parity could not be satisfied on the 
available workstations. We thus have restricted ourselves to the study of perturbations 
with even parity. Since a perturbation of even parity with d = 0 corresponds to a 
perturbation of odd parity with d = 1, we have considered the interval of values 
0 < d < 1. The only disadvantage of this method of dealing with disturbances of 
odd parity is a slight degradation in the numerical accuracy. In fact, we tested our 
method by considering separately perturbations of both even and odd parity, and by 
checking that they yield the same eigenvalues with a corresponding shift in d.  

The analysis was done for several values of the Rayleigh number as a function 
of the wavenumber a and of the parameter d.  In figure 7 a typical result for the 
stability analysis is shown at a wavenumber close to the transition from oscillatory 
to steady convection and close to the wavenumber where the oscillatory solution 
becomes unstable. The real and the nonzero imaginary parts of the eigenvalues with 
highest growth rates are shown as a function of the perturbation wavenumber d for 
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FIGURE 8. Eigenvalues with highest real part for the oscillatory solutions at different values of the 
Rayleigh number and the wavenumber. Open circles are for Ra = 400; solid circles for Ra = 500, 
open squares for Ra = 600 and solid squares for Ra = 700. For each value of Ra the two 
perturbations with the largest real part of CT are shown. 

Ra = 600. At each wavenumber, there are two perturbations that play a dominant 
role; each of them is characterized by a different imaginary part aj. One of the 
two clearly corresponds to the Eckhaus mode with vanishing imaginary part, but the 
other does not. Both of them are shown. The highest growth rate corresponds to 
d = 0 as long as ct corresponds to a value where even oscillations are stable. But 
as the wavenumber is decreased, perturbations with d = 1 will typically have the 
highest growth rate. This figure shows that in the low-wavenumber regime, oscillatory 
solutions lose stability to infinitesimal perturbations of odd parity with a frequency 
different from that of the stationary oscillatory solutions. 

In figure 8 the real part of the eigenvalues a with perturbation wavenumber d = 1 
is plotted as a function of the wavenumber ct for several values of the Rayleigh 
number. For each Rayleigh number the two dominant eigenvalues a are shown. 
For Rayleigh numbers in the interval 310 k 10 < Ra < 790 & 10 there exists a 
finite wavenumber band where oscillatory convection is stable with respect to both 
even and odd perturbations. At R a  = 700 there is an interval inside the stable 
wavenumber band at which the oscillatory solutions become unstable with respect to 
odd perturbations. At Ra = 800 and R a  = 310 we have found that even oscillations 
are unstable within the entire region that could be resolved numerically. 

7. Dynamics of disturbances evolving from unstable stationary solutions 
In order to check the results of the stability analysis and to understand the dynamics 

of solutions in the unstable regions, we have carried out direct numerical integrations 
in time of the solutions in the unstable regions. As initial condition the stationary 
solution for the given values of the parameters R a  and ct was used with slight 
perturbations added to all coefficients (about 1% of the nearest amplitude value). 
The Adams-Bashforth scheme has been used for the time integration. The temporal 
code was implicit in the linear term and explicit for the convolution term. The 
constant time step was chosen sufficiently small such that the amplitudes obtained 
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FIGURE 9. Evolution of the even coefficients bll, b13, and b31 and the odd coefficient b12 as a 
function of time for Ra = 200, E = 0 . 3 9 ~ ~ .  

after some transient time did not differ significantly from those obtained with half 
the time step. 

Five cases of special interest have been studied. 
The first one corresponds to the sideband instability occurring at Ra = 200 and 

LY = 0 . 3 9 ~ ~ ~ .  At this value the perturbed steady solution becomes unstable to d = 0 
perturbations of odd parity. It can be seen in figure 9 that the odd-parity mode b12 
starts growing exponentially, but, after some transient, decays to zero exponentially. 
During this time, the bll or b31 coefficients have decayed to zero together with the 
b12 coefficient. In their place the b13 and b33 modes have become dominant. The 
solution thus has changed into a solution with even parity and three times the initial 
wavenumber in the horizontal direction. No significant change in the dependence on 
the vertical coordinate occurs. Accordingly, the new solution lies in the stable region 
of the wavenumber band. 

In the second case Ra = 300 and LY = 4 . 3 ~ ~  have been used. The time integration 
was carried out for a longer box fitting 6 convection rolls in the horizontal direction, 
i.e. we have used periodic conditions with the wavenumber a/3. The blf modes 
correspond to a wavelength which is three times the unit wavelength of the rolls. 
The time evolution of the bl; and the bll modes are shown in figure 10. Instability 
sets in through a slow oscillatory growth of the blf  modes, while the bll modes and 
the Nusselt number remain almost constant at the beginning. After some time the 
fundamental mode starts to oscillate and then decays rapidly as the blf  mode grows 
to a value of the same order of magnitude that the fundamental mode had at the 
beginning of the calculation. This process describes the conversion of the six rolls 
into two. 

A third case was studied at Ra = 500 and LY = 0 . 9 ~ ~ ~  where the even oscillatory 
solution becomes unstable to perturbations of higher frequency. After some transient 
during which odd modes grow, they become periodic in time and add to the even 
modes. The evolution of the odd and even modes can be seen through the evolution 
of the bll and b12 modes plotted in figure l l (a ) .  The corresponding evolution of the 
Nusselt number has been plotted with a higher resolution at the end of the transient 
regime in figure l l (b ) .  It indicates a superposition of modes with several independent 
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FIGURE 10. Evolution of the long-wavelength coefficient b, 1 and the fundamental coefficient bll as 
a function of time for Ra = 300, a = 4.3aC. 

3 

frequencies. The most important ones being 01 - 154, 0 2  - 713 and o3 - 568. A 
look at the evolution of the isotherms shown in figure ll(c), indicates the breaking of 
the centrosymmetry of the rolls which is connected with the appearance of odd modes. 
This situation is different from the one described for the square box by Kimura et al. 
(1986) and confirmed by Caltagirone & Fabrie (1989) in their numerical simulations 
and by Graham & Steen (1992) in their bifurcation analysis. Kimura et al. detected 
odd oscillations at Rayleigh numbers between 800 and 1000, while before, and below 
the transition reported in our figure 11, they observe a state which bifurcates from 
the one-roll solution through a subcritical transition. Our method cannot follow the 
subcritical branch of a bifurcating solution. Our stability analysis thus seems to have 
followed at this point a branch of the oscillatory solution which differs from their 
numerical simulations. Graham & Steen (1994) confirm the coexistence of stable odd- 
and even-oscillatory solutions above Ra = 925, but their non-centrosymmetric branch 
has not been followed to its point of bifurcation. 

The fourth case corresponds to Ra = 700 with a = 1 . 6 ~ ~  which falls inside 
the unstable island. The evolution of the bll and the b12 coefficients is shown in 
figure 12(a). The corresponding evolution of the Nusselt number can be seen in 
figure 12(b). After some transient during which the odd modes grow, they decay 
again and only the even modes persist. This decay could also be due to dissipation 
in our numerical scheme since the growth rates in this region are not very large. The 
Nusselt number shows the superposition of the two oscillations driven by the odd 
and the even modes. 

A last case of interest was computed for Ra = 800 with the wavenumber c1 = 1.92aC. 
These parameter values are very close to the transition from oscillatory to steady 
behaviour, which occurs at a = 2 . 1 ~ ~ .  The results are shown in figures 13(a) and 
13(b). In 13(a) it is seen that the coefficients with odd m + 1 start oscillating and seem 
to dominate the temporal behaviour of the solution. The oscillations of the even 
coefficient bll seem to follow the perturbation introduced by the oscillatory growth 
of bI2.  After some transient time the solution becomes periodic. The Nusselt number 
shows a period o of about 1414. But in this case the odd oscillations dominate, so 
that the mechanism of oscillations differs from the previous cases. The geometry of 
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FIGURE 11. (a) Evolution of the even coefficient bll  and the odd coefficient b12 as a function of 
time for Ra = 500, CI = 0.9~1,. ( b )  Evolution of the Nusselt number for the same values of Ra and 
CI. (c )  (i)-(iv) isotherms at the times t = 0.15,t = 0.15108,t = 0.15212,t = 0.15316 are shown. The 
corresponding Nusselt numbers are Nu = 5.87, 5.57, 5.59, 5.9. Length scales are chosen in units of 
half the spatial wavelength in each direction. 
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FIGURE 12. (a) Evolution of the even coefficient bll and the odd coefficient b12 at Ra = 700, 

c( = 1.61~~. (b)  Evolution of the Nusselt number for the same values of Ra and a. 

the isotherms as shown in figure 13(b) indicates that the oscillations are still due to 
boundary deformations as in the case with even-parity oscillations, but the rising and 
falling of the plumes is occurring at a different time, breaking the spatial symmetry 
of the steady rolls. Since we have not followed systematically the transition line to 
the instability shown in figure 11, it is not yet clear to us whether both solutions are 
somehow connected. 

8. Summary 
We have carried out a detailed stability analysis of two-dimensional steady and 

oscillatory convection in a porous medium. In particular we have obtained examples 
of 3:l resonances akin to those discussed by Mizushima & Fujimura (1992). These 
resonances are associated with instabilities that have not been reported before and 
may be related to experimental results observed by Hegseth et al. (1992). 

The present paper presents a more complete analysis of the instabilities of steady 
rolls than has been available from previous work. The Eckhaus instability limiting 
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FIGURE 13. ( a )  Evolution of the even coefficient bll,  of the odd coefficient b12 and of the Nus- 
selt number for Ra = 800, c( = 1.92c(,.(b) (i)-(iv) From left to right isotherms at the times 
t = 0.15 ,~  = 0.15116,~ = 0.1523,t = 0.15344 are shown. The corresponding Nusselt numbers are 
Nu = 8.3, 7.81, 7.6, 8.29. Length scales are chosen in units of half the spatial wavelength in each 
direction. 

the band of stable wavenumbers at low supercritical Rayleigh numbers is replaced 
by a sideband instability corresponding to odd-parity perturbations as the Rayleigh 
number increases. This instability leads to a 3:l jump in the wavelength. A third 
instability of oscillatory character occurs at high wavenumbers, which is also related 
to a 3 :1 resonance mechanism and tends to change the wavelength by a finite amount. 
The fourth instability yields an oscillatory state of even parity for low wavenumbers 
and for Rayleigh numbers above Ra = 218. 

In the region where even oscillatory solutions exist, they lose always stability 
through the growth of odd oscillatory modes. Two cases can be distinguished. In 
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the first case the odd modes grow while the existing even oscillatory solution persists. 
Both oscillations coexist and yield a non-centrosymmetric state with several temporal 
frequencies different from the centrosymmetric one described for the square box by 
Kimura et al. (1986) and confirmed by Caltagirone & Fabrie (1989) in their numerical 
simulations. 

A second transition to non-centrosymmetric convection occurs at Rayleigh numbers 
above 790: steady convection bifurcates into a regular oscillatory state where the 
odd modes show large-amplitude oscillations and seem to trigger and dominate the 
oscillations of the even modes. This type of oscillatory solution for Ra > 790 is related 
to an asymmetry between the rising hot and the falling cold plumes. This differs 
from the situation reported in earlier works at lower Ra where the lower oscillatory 
instability keeps the symmetry between both types of plumes. 

After the research of this paper had been finished, the authors became aware of 
the paper by Graham & Steen (1994), which is addressed to the related problem of 
two-dimensional oscillatory convection in a square box. That article discusses the 
scaling laws of centrosymmetric solutions above Ra = 650 and non-centrosymmetric 
solutions above Ra 2 925. They confirm the results obtained by Kimura et al. (1986) 
and Caltagirone & Fabrie (1989) on this type of oscillation and give a critical value of 
Ra at which they are stable. These oscillations can be related to those which bifurcate 
according to our analysis from the steady solution at Ra = 800 and M = 2 . 1 ~ ~  or from 
the centrosymmetric oscillatory solution at Ra = 500. 

This work was carried out as part of the ‘Accion Integrada Hispano-Alemana 
HA-043 and HA-086‘. One of the authors (M.T.J.) is grateful to E. Crespo del Arc0 
for stimulating discussions and to M. Higuera Torron for her help during the initial 
stages of this project. 
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